【报告题目】 Benjamin-Ono-Burgers 方程的无粘性极限研究
【报 告人】韩励佳
【时间】2020年11月20日(星期五 )3:00-4:00pm
【地 点】主D601
【报告人简介】韩励佳教授主要研究偏微分方程,代表作有:
1. ; ; Absence of shocks for one dimensional Euler-Poisson system.1057–1121.
2. ; ; Global smooth solution for a kind of two-fluid system in plasmas.3453–3481.
3. ; ; ; Virial type blow-up solutions for the Zakharov system with magnetic field in a cold plasma. 2508–2528.
4.; ; Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data. 2253–2281.
5.; Global wellposedness and limit behavior for the generalized finite-depth-fluid equation with small data in critical Besov spaces B˙s2,1 . 2103–2144.
【报告内容简介】
报告首先将介绍Benjamin-Ono方程等一系列色散型非线性偏微分方程。其次,介绍当粘性系数趋近于0时,Benjamin-Ono-Burgers 方程对Benjamin-Ono方程的逼近。报告基于下面的两篇新近研究论文:
[1]Mingjuan Chen, Boling Guo, LijiaHan*,Uniform localwell-posedness and inviscid limit for the Benjamin-Ono-Burgersequation. Science China Mathematics. Accepted.
[2] Mingjuan Chen, Boling Guo, LijiaHan*,Global well-posedness and inviscid limit for the generalized Benjamin-OnoBurgers equation. Applicable Analysis, 98 (3)(2019), 536– 552.